bycycle.plts.plot_feature_hist¶
- bycycle.plts.plot_feature_hist(feature, param_label, only_bursts=True, bins='auto', ax=None, **kwargs)[source]¶
Plot a histogram for a cycle feature.
- Parameters:
- featurepandas.DataFrame or 1d array
Dataframe output from
compute_features()
or a 1d array.- param_labelstr
Column name of the parameter of interest in
df_features
.- only_burstbool, optional, default: True
Whether to limit cycles to only those that are bursting.
- binsint or string, optional, default: ‘auto’
The number of bins or binning strategy, as specified in matplotlib.pyplot.hist.
- axmatplotlib.Axes, optional
Figure axes upon which to plot.
- **kwargs
Keyword arguments to pass into matplotlib.pyplot.hist.
Notes
Default keyword arguments include:
xlabel
: str, default:param_label
figsize
: tuple of (float, float), default: (10, 10)color
: str, default: ‘k’xlim
: tuple of (float, float), default: Nonefontsize
: float, default: 15alpha
: float, default: .5
Examples
Plot a histogram of each cycle’s mean band amplitude:
>>> from bycycle.features import compute_features >>> from neurodsp.sim import sim_bursty_oscillation >>> fs = 500 >>> sig = sim_bursty_oscillation(10, fs, freq=10) >>> df_features = compute_features(sig, fs, f_range=(8, 12), return_samples=False) >>> plot_feature_hist(df_features, 'band_amp', only_bursts=False)
Examples using bycycle.plts.plot_feature_hist
¶
1. Theta oscillation cycle feature distributions
3. MNE Interface Cycle Feature Distributions
4. PAC Cycle Feature Distributions