bycycle.plts.plot_cyclepoints_df¶
- bycycle.plts.plot_cyclepoints_df(df_samples, sig, fs, plot_sig=True, plot_extrema=True, plot_zerox=True, xlim=None, ax=None, **kwargs)[source]¶
Plot extrema and/or zero-crossings from a DataFrame.
- Parameters:
- df_samplespandas.DataFrame
Dataframe output of
compute_cyclepoints()
.- sig1d array
Time series to plot.
- fsfloat
Sampling rate, in Hz.
- plot_sigbool, optional, default: True
Whether to also plot the raw signal.
- plot_extremabool, optional, default: True
Whether to plots the peaks and troughs.
- plot_zeroxbool, optional, default: True
Whether to plots the zero-crossings.
- xlimtuple of (float, float), optional
Start and stop times.
- axmatplotlib.Axes, optional
Figure axes upon which to plot.
- **kwargs
Keyword arguments to pass into plot_time_series.
Notes
Default keyword arguments include:
figsize
: tuple of (float, float), default: (15, 3)xlabel
: str, default: ‘Time (s)’ylabel
: str, default: ‘Voltage (uV)
Examples
Plot cyclepoints using a dataframe from
compute_cyclepoints()
:>>> from bycycle.features import compute_cyclepoints >>> from neurodsp.sim import sim_bursty_oscillation >>> fs = 500 >>> sig = sim_bursty_oscillation(10, fs, freq=10) >>> df_samples = compute_cyclepoints(sig, fs, f_range=(8, 12)) >>> plot_cyclepoints_df(df_samples, sig, fs)