bycycle.plts.plot_burst_detect_param¶
- bycycle.plts.plot_burst_detect_param(df_features, sig, fs, burst_param, thresh, xlim=None, interp=True, ax=None, **kwargs)[source]¶
Plot a burst detection parameter and threshold.
- Parameters:
- df_featurespandas.DataFrame
Dataframe output of
compute_features()
.- sig1d array
Time series to plot.
- fsfloat
Sampling rate, in Hz.
- burst_paramstr
Column name of the parameter of interest in
df
.- threshfloat
The burst parameter threshold. Parameter values greater than
thresh
are considered bursts.- xlimtuple of (float, float), optional, default: None
Start and stop times for plot.
- interpbool, optional, default: True
Interpolates points if true.
- axmatplotlib.Axes, optional
Figure axes upon which to plot.
- **kwargs
Keyword arguments to pass into plot_time_series.
Notes
Default keyword arguments include:
figsize
: tuple of (float, float), default: (15, 3)xlabel
: str, default: ‘Time (s)’ylabel
: str, default: ‘Voltage (uV)color
: str, default: ‘r’.Note:
color
here is the fill color, rather than line color.
Examples
Plot the monotonicity of a bursting signal:
>>> from bycycle.features import compute_features >>> from neurodsp.sim import sim_bursty_oscillation >>> fs = 500 >>> sig = sim_bursty_oscillation(10, fs, freq=10) >>> threshold_kwargs = {'amp_fraction_threshold': 0., 'amp_consistency_threshold': .5, ... 'period_consistency_threshold': .5, 'monotonicity_threshold': .8} >>> df_features = compute_features(sig, fs, f_range=(8, 12), ... threshold_kwargs=threshold_kwargs) >>> plot_burst_detect_param(df_features, sig, fs, 'monotonicity', .8)