bycycle.plts.plot_burst_detect_param¶
- bycycle.plts.plot_burst_detect_param(df_features, sig, fs, burst_param, thresh, xlim=None, interp=True, ax=None, **kwargs)[source]¶
- Plot a burst detection parameter and threshold. - Parameters:
- df_featurespandas.DataFrame
- Dataframe output of - compute_features().
- sig1d array
- Time series to plot. 
- fsfloat
- Sampling rate, in Hz. 
- burst_paramstr
- Column name of the parameter of interest in - df.
- threshfloat
- The burst parameter threshold. Parameter values greater than - threshare considered bursts.
- xlimtuple of (float, float), optional, default: None
- Start and stop times for plot. 
- interpbool, optional, default: True
- Interpolates points if true. 
- axmatplotlib.Axes, optional
- Figure axes upon which to plot. 
- **kwargs
- Keyword arguments to pass into plot_time_series. 
 
 - Notes - Default keyword arguments include: - figsize: tuple of (float, float), default: (15, 3)
- xlabel: str, default: ‘Time (s)’
- ylabel: str, default: ‘Voltage (uV)
- color: str, default: ‘r’.- Note: - colorhere is the fill color, rather than line color.
 
 - Examples - Plot the monotonicity of a bursting signal: - >>> from bycycle.features import compute_features >>> from neurodsp.sim import sim_bursty_oscillation >>> fs = 500 >>> sig = sim_bursty_oscillation(10, fs, freq=10) >>> threshold_kwargs = {'amp_fraction_threshold': 0., 'amp_consistency_threshold': .5, ... 'period_consistency_threshold': .5, 'monotonicity_threshold': .8} >>> df_features = compute_features(sig, fs, f_range=(8, 12), ... threshold_kwargs=threshold_kwargs) >>> plot_burst_detect_param(df_features, sig, fs, 'monotonicity', .8)