bycycle.burst.detect_bursts_amp¶
- bycycle.burst.detect_bursts_amp(df_features, burst_fraction_threshold=1, min_n_cycles=3)[source]¶
Detect bursts based on amplitude thresholding.
- Parameters:
- df_featurespandas.DataFrame
Waveform features for individual cycles from
compute_burst_features()
.- burst_fraction_thresholdint or float, optional, default: 1
Minimum fraction of a cycle to be identified as a burst.
- min_n_cyclesint, optional, default: 3
The minimum number of cycles of consecutive cycles required to be considered a burst.
- Returns:
- df_featurespandas.DataFrame
Dataframe updated, with a additional column to indicate if the cycle is part of a burst.
Examples
Apply thresholding for dual amplitude burst detection:
>>> from bycycle.features import compute_burst_features, compute_shape_features >>> from neurodsp.sim import sim_bursty_oscillation >>> fs = 500 >>> sig = sim_bursty_oscillation(10, fs, freq=10) >>> df_shapes = compute_shape_features(sig, fs, f_range=(8, 12)) >>> df_burst = compute_burst_features(df_shapes, sig, burst_method='amp', ... burst_kwargs={'fs': fs, 'f_range': (8, 12)}) >>> df_burst = detect_bursts_amp(df_burst)