Source code for neurodsp.burst.dualthresh

"""The dual threshold algorithm for detecting oscillatory bursts in a neural signal."""

import numpy as np

from neurodsp.utils.core import get_avg_func
from neurodsp.utils.checks import check_param_options
from neurodsp.utils.decorators import multidim
from neurodsp.timefrequency.hilbert import amp_by_time

###################################################################################################
###################################################################################################

[docs]@multidim() def detect_bursts_dual_threshold(sig, fs, dual_thresh, f_range=None, min_n_cycles=3, min_burst_duration=None, avg_type='median', magnitude_type='amplitude', **filter_kwargs): """Detect bursts in a signal using the dual threshold algorithm. Parameters ---------- sig : 1d array Time series. fs : float Sampling rate, in Hz. dual_thresh : tuple of (float, float) Low and high threshold values for burst detection. Units are normalized by the average signal magnitude. f_range : tuple of (float, float), optional Frequency range, to filter signal to, before running burst detection. If f_range is None, then no filtering is applied prior to running burst detection. min_n_cycles : float, optional, default: 3 Minimum burst duration in to keep. Only used if `f_range` is defined, and is used as the number of cycles at f_range[0]. min_burst_duration : float, optional, default: None Minimum length of a burst, in seconds. Must be defined if not filtering. Only used if `f_range` is not defined, or if `min_n_cycles` is set to None. avg_type : {'median', 'mean'}, optional Averaging method to use to normalize the magnitude that is used for thresholding. magnitude_type : {'amplitude', 'power'}, optional Metric of magnitude used for thresholding. **filter_kwargs Keyword parameters to pass to `filter_signal`. Returns ------- is_burst : 1d array Boolean indication of where bursts are present in the input signal. True indicates that a burst was detected at that sample, otherwise False. Notes ----- The dual-threshold burst detection algorithm was originally proposed in [1]_. References ---------- .. [1] Feingold, J., Gibson, D. J., DePasquale, B., & Graybiel, A. M. (2015). Bursts of beta oscillation differentiate postperformance activity in the striatum and motor cortex of monkeys performing movement tasks. Proceedings of the National Academy of Sciences, 112(44), 13687–13692. DOI: https://doi.org/10.1073/pnas.1517629112 Examples -------- Detect bursts using the dual threshold algorithm: >>> from neurodsp.sim import sim_combined >>> sig = sim_combined(n_seconds=10, fs=500, ... components={'sim_synaptic_current': {}, ... 'sim_bursty_oscillation' : {'freq': 10}}, ... component_variances=[0.1, 0.9]) >>> is_burst = detect_bursts_dual_threshold(sig, fs=500, dual_thresh=(1, 2), f_range=(8, 12)) """ if len(dual_thresh) != 2: raise ValueError("Invalid number of elements in 'dual_thresh' parameter") # Compute amplitude time series sig_magnitude = amp_by_time(sig, fs, f_range, remove_edges=False, **filter_kwargs) # Set magnitude as power or amplitude: square if power, leave as is if amplitude check_param_options(magnitude_type, 'magnitude_type', ['amplitude', 'power']) if magnitude_type == 'power': sig_magnitude = sig_magnitude**2 # Calculate normalized magnitude sig_magnitude = sig_magnitude / get_avg_func(avg_type)(sig_magnitude) # Identify time periods of bursting using the 2 thresholds is_burst = _dual_threshold_split(sig_magnitude, dual_thresh[1], dual_thresh[0]) # Remove bursts detected that are too short # Use a number of cycles defined on the frequency range, if available if f_range is not None and min_n_cycles is not None: min_burst_samples = int(np.ceil(min_n_cycles * fs / f_range[0])) # Otherwise, make sure minimum duration is set, and use that else: if min_burst_duration is None: raise ValueError("Minimum burst duration must be defined if not filtering " "and using a number of cycles threshold.") min_burst_samples = int(np.ceil(min_burst_duration * fs)) is_burst = _rmv_short_periods(is_burst, min_burst_samples) return is_burst.astype(bool)
def _dual_threshold_split(sig, thresh_hi, thresh_lo): """Identify periods that are above thresh_lo and have at least one value above thresh_hi.""" # Find all values above thresh_hi # To avoid bug in later loop, do not allow first or last index to start off as 1 sig[[0, -1]] = 0 idx_over_hi = np.where(sig >= thresh_hi)[0] # Initialize values in identified period positive = np.zeros(len(sig)) positive[idx_over_hi] = 1 # Iteratively test if a value is above thresh_lo if it is not currently in an identified period sig_len = len(sig) for ind in idx_over_hi: j_down = ind - 1 if positive[j_down] == 0: j_down_done = False while j_down_done is False: if sig[j_down] >= thresh_lo: positive[j_down] = 1 j_down -= 1 if j_down < 0: j_down_done = True else: j_down_done = True j_up = ind + 1 if positive[j_up] == 0: j_up_done = False while j_up_done is False: if sig[j_up] >= thresh_lo: positive[j_up] = 1 j_up += 1 if j_up >= sig_len: j_up_done = True else: j_up_done = True return positive def _rmv_short_periods(sig, n_samples): """Remove periods that are equal to 1 for less than n_samples.""" if np.sum(sig) == 0: return sig osc_changes = np.diff(1 * sig) osc_starts = np.where(osc_changes == 1)[0] osc_ends = np.where(osc_changes == -1)[0] if len(osc_starts) == 0: osc_starts = [0] if len(osc_ends) == 0: osc_ends = [len(osc_changes)] if osc_ends[0] < osc_starts[0]: osc_starts = np.insert(osc_starts, 0, 0) if osc_ends[-1] < osc_starts[-1]: osc_ends = np.append(osc_ends, len(osc_changes)) osc_length = osc_ends - osc_starts osc_starts_long = osc_starts[osc_length >= n_samples] osc_ends_long = osc_ends[osc_length >= n_samples] is_osc = np.zeros(len(sig)) for ind in range(len(osc_starts_long)): is_osc[osc_starts_long[ind]:osc_ends_long[ind]] = 1 return is_osc